Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6842, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891165

RESUMO

All real heat engines, be it conventional macro engines or colloidal and atomic micro engines, inevitably tradeoff efficiency in their pursuit to maximize power. This basic postulate of finite-time thermodynamics has been the bane of all engine design for over two centuries and all optimal protocols implemented hitherto could at best minimize only the loss in the efficiency. The absence of a protocol that allows engines to overcome this limitation has prompted theoretical studies to suggest universality of the postulate in both passive and active engines. Here, we experimentally overcome the power-efficiency tradeoff in a colloidal Stirling engine by selectively reducing relaxation times over only the isochoric processes using system bath interactions generated by electrophoretic noise. Our approach opens a window of cycle times where the tradeoff is reversed and enables the engine to surpass even their quasistatic efficiency. Our strategies finally cut loose engine design from fundamental restrictions and pave way for the development of more efficient and powerful engines and devices.

2.
Soft Matter ; 18(39): 7621-7630, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36165997

RESUMO

Colloidal heat engines are model systems to analyze mechanisms of transduction of heat to work at the mesoscale. While engines developed hitherto were realized using conservative potentials and operated in isolation, biological micromotors - their real counterparts - seldom perform under such simplifications. Here, we examine thermodynamics beyond such idealizations by constructing a pair of engines from two colloidal microspheres in optical traps at close separation. We demonstrate that at such proximity, non-conservative scattering forces that were hitherto neglected affect the particle motion. Hydrodynamics generated while dissipating these are hindered by the microsphere in the adjacent trap and energy that was otherwise rejected into the medium gets reused. Thus, despite being in contact with the same reservoir, the particles are driven out of equilibrium and can exchange energy, allowing cooperative behavior. Leveraging this in a manner analogous to microswimmers and active Brownian particles that utilize such flows to enhance propulsion, we construct two colloidal engines in close proximity. To estimate thermodynamic quantities, we develop a minimal model that is appropriate in the asymptotic limit and is similar to active Brownian particles. While complete theoretical frameworks to understand such scenarios remain to be developed, results based on our model demonstrate the intuitive idea that a pair of Stirling engines at close proximity outperform those that are well separated. Although these results explore the simplest case of two Stirling engines, the concepts unraveled could aid in designing larger collections akin to biological systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...